 We are given a linked list with head as the first node.  Let's number the nodes in the list: node_1, node_2, node_3, ... etc.

Each node may have a next larger value: for node_inext_larger(node_i) is the node_j.val such that j > inode_j.val > node_i.val, and j is the smallest possible choice.  If such a j does not exist, the next larger value is 0.

Note that in the example inputs (not outputs) below, arrays such as [2,1,5] represent the serialization of a linked list with a head node value of 2, second node value of 1, and third node value of 5.

Example 1:

Input: [2,1,5]
Output: [5,5,0]

Example 2:

Input: [2,7,4,3,5]
Output: [7,0,5,5,0]

Example 3:

Input: [1,7,5,1,9,2,5,1]
Output: [7,9,9,9,0,5,0,0]
/**
* public class ListNode {
*     int val;
*     ListNode next;
*     ListNode(int x) { val = x; }
* }
*/
class Solution {
List<Integer> resultList = new ArrayList<Integer>();
while(temp != null){
ListNode t = temp.next;
int val = temp.val;
boolean foundGreaterVal = false;
while(t != null){
if(t.val > val){
foundGreaterVal = true;
break;
}
t = t.next;
}
temp = temp.next;
}
//System.out.println(resultList);
int[] result = resultList.stream().mapToInt(i -> i).toArray();
//System.out.println(Arrays.toString(result));
return result;
}
}